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Laminar entrance flow in a curved pipe 
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The full elliptic Navier-Stokes equations have been solved for entrance flow into a 
curved pipe using the artificial compressibility technique developed by Chorin (1967). 
The problem is formulated for arbitrary values of the curvature ratio and the Dean 
number. Calculations are carried out for two curvature ratios, a / R  = 4 and &, and 
for Dean number ranging from 108.2 to 680.3, in a computational mesh extending 
from the inlet immediately adjacent to the reservoir to the fully developed down- 
stream region. 

Secondary flow separation near the inner wall is observed in the developing region 
of the curved pipe. The separation and the magnitude of the secondary flow are found 
to be greatly influenced by the curvature ratio. As observed in the experiments of 
Agrawal, Talbot & Gong (1978) we find: (i) two-step plateau-like axial-velocity 
profiles for high Dean number, due to the secondary flow separation, and (ii) doubly 
peaked axial-velocity profiles along the lines parallel to the plane of symmetry, due 
to the highly distorted secondary-flow vortex structure. 

1. Introduction 
Fluid flow in curved pipes has attracted much attention because curved pipe or 

tube geometries arise in bio-fluid-mechanics, especially blood flow in the aorta, as well 
as in engineering applications to heat exchangers, bends in piping systems, intakes 
in aircraft, etc. 

Unlike the flow in a straight pipe, fluid motion in a curved pipe is not parallel to 
the curved axis of the bend, owing to the presence of a secondary motion caused by 
centrifugal effects. As the flow enters a curved bend, a centrifugal force of order W 2 / R  
acts outward from the centre of curvature on the fluid particles. Pressure gradients 
parallel to the axis of symmetry are almost uniform along lines normal to that 
symmetry axis. Because of the no-slip condition a t  the wall, the axial velocity in the 
core region is much faster than that near the wall. To maintain the momentum 
balance between the centrifugal force and the pressure gradient, slower-moving fluid 
particles must move along paths whose radii of curvature are smaller than those of 
faster-moving particles. This leads to the onset of a secondary flow such that fluid 
near the wall moves toward the inner wall along upper and lower halves of the torus 
wall while fluid far from it flows to the outer wall. With the addition of the 
mainstream motion, the fluid particles follow helical trajectories. Similar arguments 
can be applied to explain the winding course of open channels. 

As was first discovered by Williams, Hubbell & Fenkell (1902), secondary motion 
shifts the location of the maximum axial velocity toward the outer wall of a curved 
pipe. The secondary flow enhances the flow resistance, resulting in a larger pressure 
drop along the bend (as compared with a straight pipe) and also expediting heat- and 
mass-transfer processes. An increase in momentum exchange in a curved pipe causes 
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the critical Reynolds number to rise as high as 7800 for a curvature ratio a / R  = f, 
where a is the radius of the pipe and R the radius of curvature of the bend. 
Experiments of White (1919), Taylor (1929) and Adler (1934) have confirmed that 
the flow in a curved tube is much more stable than that in a straight pipe. 

The entry flow in a curved geometry has recently become of physiological concern 
because of its relevance to such phenomena as the mixing of injected substances in 
arteries and the deposition of suspended material, such as cholesterol, on their walls. 
There are several controversial theories to explain the occurrence of atheromatous 
deposits on the vascular wall. Fry (1968,1973) suggested that atheromatous deposits 
may occur in areas where wall shear is maximum. An opposing theory has been put 
forward by Caro, Fitz-Gerald & Schroter (1971). They maintained that deposits occur 
at  sites of low wall shear. In  helping decide the issue, it is important to obtain accurate 
fluid-flow quantities for the entrance flow in a curved pipe. 

2. Previous investigations 
Since the qualitative observation of secondary motion by Thompson (1876), in his 

explanation of the winding course of rivers, and by Eustice (1910, 1911), who 
discovered spiral motion in a curved pipe from dye-injection experiments, numerous 
studies on fluid flow in a curved pipe have been made for both fully developed and 
developing flows. 

Dean (1927, 1928) may be credited with the first major theoretical advance, due 
to his pioneering studies on this subject for fully developed flows. Dean showed that 
the flow in slightly curved pipes depends primarily on a single non-dimensional 
parameter, first introduced by him and now called the Dean number. For small values 
of this parameter he developed a series solution as a perturbation of the parabolic 
velocity profile in a straight pipe, from which he was able to obtain a clear picture 
of the secondary flow streamlines and to calculate the friction ratio f,/f,, the ratio 
of the resistance in a curved pipe to that in a straight one for the same flowrate. 
Subsequent studies have been surveyed comprehensively by Berger, Talbot & Yao 
(1983). We restrict ourselves to a brief review of steady, incompressible, laminar flow 
in a rigid curved pipe. 

2.1. Fully developed flow 
Most of the fully developed flow analyses have been carried out on the assumption 
that the curvature ratio 6, equal to a/&, is small. When 6 is small i t  can be shown 
(Dean 1928), as mentioned above, that the flow depends only on a single non- 
dimensional parameter, the Dean number. Since Dean a variety of Dean numbers 
have been introduced (see e.g. Berger et al. 1983). For the purpose of the following 
discussion any one of these definitions will suffice. Let us then define one of these as 
D = (Ga2/,u) (2a3/v2R)t, where G is the constant pressure gradient along the bend. 

Intermediate Dean number 

McConalogue & Srivastava (1968) obtained numerical solutions for the range 
96 < D < 600 by a pseudospectral technique in the circumferential variable $, 
reducing the momentum equation to an ordinary differential equation in the radial 
direction. The lower limit on D in their work was the upper limit in Dean’s work. 
Truesdell & Adler (1970), Akiyama & Cheng (1971), Greenspan (1973), Austin & 
Seader (1973), Collins & Dennis (1975) and Dennis & Ng (1982) have reported 
finite-difference solutions. Extension of McConalogue & Srivastava’s work has been 
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made by Dennis & Ng for the range 96 < D < 5000. Interestingly enough, they found 
non-uniqueness in their solutions, with a four-vortex as well as two-vortex type of 
secondary flow appearing for D 2 956. Masliyah (1980) had already found a 
four-vortex mode for a cross-section of semicircular shape with the flat surface 
forming the outer bend. 

Large Dean number 
Adler (1934) observed secondary-flow boundary layers on the two halves of the 

torus and inferred that the two boundary layers, on the upper and lower halves, 
collide a t  the innermost point of the cross-section, separate there, and form a 
reentrant jet that moves outward through the core. He claimed that f c / f s  is pro- 
portional to  d,  where K = 2&(aW,/u), w, being the mean axial velocity. We note 
also that this definition of Dean number is the one that will be used throughout the 
remainder of the paper. 

Since finite-difference methods have only recently become readily accessible, and 
in any case become inadequate as D approaches infinity, most of the works in this 
category, beginning with Adler, employ boundary-layer approximations. Barua 
(1963) constructed a secondary flow model assuming that there are two distinct flow 
regions - a viscous region near the wall and an inviscid core far from it - and that 
the secondary flow is parallel to the plane of symmetry outside the boundary layers. 
He used asymptotic techniques for the main flow and the Pohlhausen integral method 
for the cross-flow boundary layers, patching the inner and outer solutions a t  the outer 
edge of the boundary layers. Barua found cross-flow separation at about 27" from 
the inner bend. I t6 (1969) discovered that his boundary-layer solution breaks down 
near the inner bend. All of the analyses mentioned show that f c / f s  is proportional 
to K:. Finally, Van Dyke (1978) speculated that high-Dean-number flow is not of 
conventional boundary-layer type, since he found that f c / f s  grows like K: from his 
extension by computer of Dean's series solution. 

2.2. Entry $ow 
Austin (1971), Patankar, Pratap & Spalding (1974) and Humphrey (1977) carried out 
finite-difference calculations of the flow development in a curved pipe beginning with 
Poiseuille flow a t  the inlet. Smith (1976) also investigated the transition of a parabolic 
flow in a straight pipe to a curved one near their junction. Our concern is restricted 
to the flow development following entry into the curved pipe. 

Singh (1974) obtained a series solution for the entry-flow problem valid up to a 
downstream distance O(a&) matching asymptotic expansions for the flows in and 
outside the boundary layer. He found a saddle-point-like stagnation point and a 
node-like sink near and a t  the centre of the pipe. Yao & Berger (1975), by adopting 
Barua's flow model, obtained a solution for the flow from the entry to  the fully 
developed region. Like Barua, they patched the solutions for the flows inside and 
outside the viscous region a t  the outer edge of the boundary layer in the radial 
direction, and matched with Barua's fully developed solution, employing two 
different lengthscales in the streamwise direction. They found separation of the 
cross-flow, the extent of which increases as the flow moves downstream and then 
decreases monotonically as the fluid travels farther downstream (i.e. as the flow 
approaches Barua's solution). Liu (1977) has solved the elliptic Navier-Stokes 
equations numerically for one particular developing flow (8 = 0.2, Re = 200) up to 
a 90' bend angle, where fully developed conditions are assumed to hold. Stewartson, 
Cebeci & Chang (1980) carried out boundary-layer calculations for large Dean number, 



112 W .  Y .  Soh and S. A .  Berger 

and found vanishing axial shear a t  the inner bend at a downstream distance 
l / a  = 0.943&, where 1 is the arclength along the centreline of the bend. Since both 
circumferential velocity and circumferential shear were not zero a t  this point, these 
calculations supported Adler’s (1934) conjecture of a reentrant jet in the cross-flow. 
The singular behaviour near the point of vanishing axial shear has been studied 
further by Stewartson & Simpson (1982). 

Agrawal, Talbot & Gong (1978) measured the developing flow velocities of both 
axial and cross-flow components using a laser-Doppler velocimeter, and found an 
embedded vortex in addition to secondary flow separation near the inner bend. Choi, 
Talbot & Cornet (1  979) performed electrochemical limited-current measurements of 
the local wall shear. Finding a valley in the circumferential wall-shear profile and a 
region of non-monotonic variation of wall shear with downstream distance, they also 
suggested that the vortex structure in the entry region is much more complicated 
than that in the fully developed flow. 

3. Mathematical formulation 
3.1. Governing equations 

The equations of motion of a homogeneous fluid can be written in integral form as 

and 

21 pu‘dV’+j  pu’(u’.n)dS‘ = - 
at’ V’ S’ 

js,puf.ndS’ = 0, 

where p is the density, u’ the velocity vector, p‘ the pressure, t‘ the time, d V  an 
elementary volume, dS’ an elementary surface, n the unit outward normal vector to 
that surface element, and 2’ the viscous stress tensor. We shall assume that the fluid 
is incompressible and Newtonian, so that the viscous stress tensor is given by 
7’ = ,u(Vu‘+ (VU’)~), where ,u is the viscosity, and superscript T denotes transpose. By 
using the Gauss divergence theorem and non-dimensionalizing the quantities u’, p‘, 
r’ (position vector) and t’ by W,, pW:, a ,  and a/W, respectively, (3.1) and (3.2) are 
reduced to the Navier-Stokes equations for an incompressible, homogeneous fluid 
flow : 

au 1 
at Re -+(u’V)u+U(V’u) = -vp+-v2u (3.3) 

and v*u = 0, (3.4) 

where W, is a velocity to be defined in 53.2 and Re is the Reynolds number, defined 
as a W,/v (unprimed quantities are the corresponding non-dimensional variables). The 
Navier-Stokes equations (3.3) and (3.4) can be rewritten in conservative form for the 
toroidal coordinate system (see figure 1 )  as follows: 

radial momentum 

‘u sin$--u ae 
s sin $‘u 62 Cos $ (. +- 

B2 
- f ( 2  $+ u) + 7 
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circumferential momentum 

1 a a 
a$ ae (rBuv)  +- (Bv2)  +- (Srww) + Buv + Sr sin $w2 

axial momentum 

a a 
at r B  ar 84 a8 
-+- - (rBuw) +- (Bvw)  +- (Srw2) + Srw(u cos $- w sin $)] 

continuity -(rBu)+-(Bv)+-(Srw) a a a = 0;  
ar a$ ae 

where B = 1 +& cos$. The non-dimensional viscous stress tensor 7 ,  defined as 
a.c’/p W,, is 

. c=  

where 

(3.9) 

roo = s + u  cos$-v sin$ . 
aw ) J  

3.2. Boundary conditions 
Because of the ellipticity of (3.5)-(3.8), boundary conditions must be imposed for all 
of the boundary surfaces of the flow domain under consideration. The fluid-flow 
boundaries may be considered as composed of four regions, the inlet cross-section, 
the rigid wall surrounding the fluid, the cross-section far downstream where the flow 
can be assumed to be fully developed (i.e. where there is no further significant change 
in velocities along the bend), and the plane of symmetry. 
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FIGURE 1. Toroidal coordinate system. 

Inlet 

It is impossible, strictly speaking, to give flow boundary conditions at the inlet 
cross-section, because the governing equations are elliptic, and therefore conditions 
at the inlet are influenced by conditions further downstream. To make the problem 
tractable we have to assume inlet flow velocities, even though this violates the 
ellipticity. Uniform axial velocity is one of the possible candidates for the choice of 
boundary conditions a t  the inlet section. Experiments by Agrawal et al. (1978) show 
that the flow immediately after leaving the reservoir (i.e. 8 = 0) develops rapidly into 
an inviscid vortex with its origin at the centre of curvature. An inviscid vortex profile 
in w will be adopted as the inlet condition in this analysis. The dimensional velocity 
distribution a t  0 = 0" is then RW,/ (R+r  cos$). The reference velocity W,, which has 
been used in non-dimensionalizing velocities in $3.1, is the axial velocity passing 
through x = 0 a t  the inlet, and may as well be considered as an average velocity over 
the cross-section for a wide range of 6, with less than 1% error. Therefore the 
boundary conditions a t  the inlet can be written as 

i 

u(r, $, 0) = v(r, $,0) = 0. (3.10) 

Rigid wall 
Owing to the no-slip condition a t  the wall the velocities vanish there, i.e. 

u(i ,+,e) = q i , $ , q  = W ( i , + , q  = 0. (3.11) 

Far downstream 
We assume that far downstream from the inlet the streamwise derivatives (i.e. a/a8) 

of all the velocity components vanish. In most of the calculations in the present work 
the axial variable ed = 7c is taken as 'far downstream'. Downstream axial distances 
ed are tabulated in table 1. Thus we have 

au av aw 
ae ae ae - 0 a t  8 = ed. - -  - _ - - - -  (3.12) 
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K Re 6 0, No. of steps in 6' 8 yo error in Q 
1 

1 
108.2 242 20 101" 17 0.8 x 10-4 1.06 

369.4 826 t 180" 25 0.95 x 10-4 1.5 
564.8 1263 20 180" 25 0.8 x 10-4 1 .7  

- 

182.9 242 7 180" 25 0.8 x 10-4 1.14 

670.8 1500 20 180" 25 1.0 x 10-4 2.5 
680.3 900 7 267' 30 1.5 x 10-4  1.34 

~ 

1 

1 

TABLE 1 

Plane of symmetry 
Owing to the existence of a plane of symmetry of the flow ($ = 0, K ) ,  we need to 

solve the Navier-Stokes equations only for 0 < # < K .  The boundary conditions on 
the plane of symmetry are 

au aw 
a $ = %  - = O  and v = O  a t  $ = O , K .  (3.13) 

4. Numerical formulation 
Because of the special role of pressure, great care is needed in carrying out the 

numerical solution of (3.5)-(3.8). If we take the curl of the momentum equation, we 
get the equations of motion in terms of the vorticity and the vector potential, with 
the pressure eliminated. This, however, leads to great difficulties with boundary 
conditions, especially in three-dimensional flows. It is much easier and more accurate 
to use the primitive variables. Thus we employ the primitive variables u, v ,  w and 
p in this analysis. 

Harlow & Welch (1965) and Williams (1969) solved the Poisson equation for the 
pressure by a relaxation method and a fast-Fourier-transform technique respectively. 
Chorin (1968) presented a pressure-velocity method which is more straightforward 
and efficient, and guarantees accuracy a t  the boundaries. Viecelli (1971), Hirt & Cook 
(1972), Peskin (1972) and Liu (1977) used this approach, in which flow quantities a t  
the next time step are calculated from previous flow data by correcting the pressure 
successively until the continuity equation is satisfied. 

4.1. Artificial compressibility 

If the purpose is to  find solely the steady-state solution of (3.5)-(3.8), it  is unnecessary 
and computationally wasteful to solve the exact equations of motion, particularly 
the continuity equation, a t  every time step. Chorin (1967) introduced the following 
auxiliary system : 

1 
(4.1) 

all* 
- + [ (u* ' V )  u* + u*(V*u*)] = - vp*  + - v2u*, 
at Re 

aP* 
t-+V'u* at = 0. (4.2) 

With this system, u*, the solution of (4.1) and (4.2), approaches u, the solution of 
(3.3) and (3.4), as steady state is reached. Equation (4.2) implicitly defines an artificial 
sound speed V, = W, t-4 and artificial Mach number M ,  where 

M = max (u2 + v2 + w2)t = 6; qmax. 
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1 

qmax 
t<-. (4.3) 

The numerical value of 5, which is called the coefficient of artificial compressibility, 
is chosen for most rapid convergence. It plays a role similar to  that of a relaxation 
coefficient. 

Chorin’s auxiliary system has enormous advantages owing to the time-explicit form 
of the pressure field. The merits of this method can be sumniarized as: ( 1 )  solution 
of Poisson equation for pressure, and consequently boundary conditions for pressure, 
are not necessary ; ( 2 )  pressurevelocity iteration to satisfy continuity a t  every time 
step is not necessary; (3) inclusion of an explicit time derivative of pressure makes 
i t  possible to  solve the Navier-Stokes equations by a tinio-marching technique, as 
for initial-value problems, leaving the spatial ellipticity of the equations intact (i.e. 
the auxiliary system of equations is parabolic in time and fully elliptic in the space 
dimensions) ; (4) simplicity in programming. 

The equations to  be solved are (3.5)-(3.7) together with the modified continuity 
equation 

ae 
ap* i a a 
at rB ar a$ 6 ~ + - [ - (rBu* ) + - (Bv*  ) + (4.4) 

(from now on we omit * for convenience) with boundary conditions (3.10)-(3.12), and 
initial conditions 

Chorin (1967), Plows (1968), Fortin, Peyret & Teman (1971) and Grabowski & Berger 
(1976) have used this approach with various finite-difference schemes to solve fluid 
flow as well as heat-transfer problems. 

4.2. Finite-difference formulations 

To rewrite the momentum equations (3.5)-(3.7) and (4.4) into a practical finite- 
difference scheme of computation, a non-uniform staggered-grid arrangement has 
been chosen (see figures 2 and 3) in such a way that pressure is defined a t  the centre 
of its cell and u, v, w are defined at different positions on the pressure cell boundaries. 
Such a non-uniform grid was chosen because of the following considerations. 

Non-uniformity in r-direction. Physically, drastic velocity changes occur near the 
pipe wall (i.e. r = l ) ,  therefore Ar should be made small near the wall and can be made 
moderately large in the neighbourhood of the centre of the pipe, r = 0 (which is not 
a physical singular point, in that  neither jumps nor infinite values of u, v, w and p 
occur there). If Ar is too small near r = 0, the smallest length element r A$ becomes 
extremely small, of order Ar A$,  which jeopardizes the stability of our time-explicit 
computation. 

Non-uniformity i n  $- and &directions. Because previous work on this problem (see 
e.g. Berger et al. 1983) suggests that  the flow structure is complicated near the inner 
bend ($ = 18O0), the computation in that region should be done with small A$, lest 
the details of the inner-bend flow structure be washed out. Small values of A6 near 
the inlet are advisable because rapid development of the main- and secondary-flow 
boundary layers is expected there. 

Strict mass conservation in finite-difference form can be obtained by this staggered 
grid arrangement because no averaging is necessary on the boundaries of the pressure 
cell. Since the averaging process is minimized when finite-difference momentum 
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I = =  rl ---)( 

FIGURE 3. Centre cell for y and w and first ith cell for u and w :  0 ,  p and w; t, u ;  x , U. 
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equations are applied to each cell for velocity components, accuracy in the numerical 
computation can be enhanced. 

Allen & Cheng's (1970) method for explicit differencing in time is adopted in the 
present analysis. Knowing u, v, w and p a t  t = n At, we can obtain these quantities 
a t  the (n+ 1)th time step. To do this, an intermediate time step ti = ( n + + ) A t  is 
introduced, which makes it possible to achieve second-order accuracy in t (for (3.3) 
and (3.4); this is an issue that is not relevant to our auxiliary system (4.1) and (4.2)) 
and which allows for a larger time interval At (Allen & Cheng 1970). Therefore an 
intermediate sweep is written as 

which is followed by a regular sweep as 

,,n+l- ,,n 

At 
+ F(d) = - G@) + H(ui ; zP+'), (4.8) 

Here F(u) denotes the convection of momentum and G@) the pressure gradient; 
H(uZ ; urn) is the molecular diffusion of momentum due to viscosity, evaluated a t  the 
Zth time step if not a t  the point (i ,j ,  k), and at the mth time step if a t  the point (i,j,  k). 
D(u) denotes the divergence of velocity. Decomposing (4.6)-(4.9) into components 
yields : 

intermediate sweep 

.:.k- n 

+At 

v; - v?? 

3 %jk + F,(u", v", wn)  = - G,@") + H,(un, v", W" ; uijk), (4.10) 

a3k+F$(~n ,~n ,  wn) = -G~@*)+H~(~~,v",w";v~~~,), (4.11) 

(4.12) 

+At 

+At 
' j k - w ' k +  Fe(Un, v", wn)  = -GO@") + H~(u", v", W" ; w!ijk), 

(4.13) 

regular sweep 

(4.15) 

(4.16) 

(4.17) 
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4.3. Finite diferences at the centre 

A truly staggered-grid system can be obtained only by putting a nodal point a t  the 
centre (see figure 3). I n  the cell whose centre is a t  r = 0 special treatment for the 
continuity and 8-momentum equations is necessary if mass and convective momentum 
are to  be conserved on the cell boundaries. This can be done using the integral form 
of the mass- and momentum-balance equations. 

The non-dimensional mass-balance equation 

can be written in a finite-difference form for the centre cell in figure 3 as 
J L  rul A$j( 1 + 6rul cos $ j )  A8k 

~ ~ ( ~ r : l ~ ) +  j=1 ulj 6 
+;mil (wc(k)-wc(k-l)) = 0, (4.18) 

where p, is the pressure a t  the centre, w, the axial velocity a t  the centre, and JL 
the number of cells in the $-direction. 

From the integral momentum equation 

-dV+ u(u*n)d# = ( - V p + z V 2 u ) d V  1 Jv: S, V 

we write the 8-momentum-difference equation in the form 

where 

A8i (1  + 6ru, cos $ j )  A8; 
6 

, AS, = A vk = ikrtl  7, ASj = rul A$j 

wc(8+) and we(&) are axial velocities at the downstream and upstream faces of the 
centre cell, and uxo is the value of u, a t  the centre, u, being defined as the velocity 
in the 2-direction on the plane of symmetry (i.e. u, = u on $ = 0, and -u on $ = n). 
The best numerical approximation of ux0 is 

uxo(k) = !i(ulllc-ulJLk). (4.20) 

To represent [j,(V2u) d V]o~component we use a cylindrical coordinate system with 
origin at the centre of curvature ; then 

= Jv{L[(l 
8-component 

(4.21) 

A finite-difference form of (4.21) can be easily constructed, because the coordinate 
singularity that occurs a t  the centre for the toroidal coordinate system is removed. 

Putting nodal points for p and w at the centre raises the problem of the value of 
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v a t  r = 0. As shown in figure 3, the v-velocity a t  the origin should be evaluated in 
order to find v and its derivatives on the 4' and $- faces in the first ith cell for the 
u-momentum equation, and on the r- face in the first i th cell for the v-momentum 
equation. Under the assumption that r = 0 is not a singular point, we multiply (3.5) 
and (3.6) through by r2,  and, after taking the limit r+O, collect the leading terms. 
This vields 

a2u av a Z v  au 

a4 a@ a$ 
__- 2--u = 0, -+2--v = 0, (4.22) 

with boundary conditions au/a$ = 0, v = 0 a t  $ = 0 and 7c. Exact solutions for these 
two equations are 

u = A(0)  cos$, ZI = --A(0) sin$, (4.23) 

A ( 0 )  is u,,(8); its best approximation u,,(k) is described by (4.20). Therefore the 
v-velocities on the $+ and $- faces become 

respectively, in the first i th cell for the u-momentum equation; the v-velocity on the 
r- face in the first ith cell for the v-momentum equation is +(vljk + u,,(k) sin g5-,). 

5. Results and discussion 
Calculations were carried out for Dean numbers lying in the range 108.2 < K 

< 680.3 for the values S = + and &,. A central-difference scheme was employed for 
the cross-flow velocities u and v. Central differencing in w was used also for the 
first four steps in 0 (i.e. up to 0 = 10.5') for the case of 6 = $, and for w < 0.15 for 
any 6 and 0. Upwind differencing in w was used for w 2 0.15. The computation was 
considered complete when the fractional changes in the radial velocities 
I(un+l-un)/unl on the plane of symmetry were less than the values of the con- 
vergence criterion, say e.  The non-dimensional flow rate for each cross-section 
Qk was calculated at the end of the computation as 

&k = J, J, wk dr 

The convergence criterion 6 and the maximum percentage error in the flow rate, which 
occurs a t  0 = 0,, are listed in table 1 for the different values of S and Re. 

The coefficient of artificial compressibility 6 and the time step At were taken as 
0.3 and 0.006 respectively. Non-uniform 14 x 19 intervals in the r- and $-directions 
were used throughout the calculations. The number of intervals in the 0-direction is 
also specified in table 1.  Comparisons were made between the solutions obtained with 
different grid systems, and i t  was found that the solutions were almost the same, so 
that we can be reasonably confident that  the present numerical calculations are 
independent of the grid system employed. Computations were carried out on the CDC 
7600 a t  Lawrence Berkeley Laboratory. It usually took 9000-14000 regular time steps 
for convergence, depending on the values of 8, Re and 8,. 

Axial flow development 

Figures 4 and 5 show the development of the axial flow on the plane of symmetry. 
As the flow enters the curved bend, boundary layers begin to develop,t with the 

t Of courye, boundary layers may have already begun developing upstream of the inlet, but this 
is not accounted for in what follows. 
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FIGURE 4. Development of axial velocity on the plane of symmetry for low K :  (a) K = 108.2 
(Re  = 242, S = &); (b) K = 182.9 (Re  = 242, S = $). -, present calculation; 0, Agrawal et al. 
(1978). 
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FIGURE 5 .  Development of axial velocity on the plane of symmetry for high K :  

(a) K = 564.8 (1263, Jo); (b) 670.8 (1500, too); (c) 680.3 (900, $). 
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1.8 wl 

X 

FIQURE 6. Comparison of fully developed axial velocity on the plane of symmetry: ---, computed 
by Collins t Dennis (1975) for K = 369.5; 0 ,  measured by Adler (1934) for K = 372 ; --, present 
calculation for K = 369.4 (Re = 826, 6 = h). 

boundary layer near the inner bend growing much faster than that near the outer 
one. I n  the early stages of the development the potential core (the flat region in the 
velocity profile) appears conspicuous; this region diminishes in size as the flow 
develops further and far downstream the entire flow passage is occupied by the 
boundary layers. It is to  be noted that the flat region persists much longer for the 
high-Reynolds-number flow than for the low-Reynolds-number flow. The location of 
the maximum axial velocity shifts toward the outer wall as the flow proceeds 
downstream. 

The development of the boundary layers is greatly influenced by two factors: the 
molecular viscous effect and the effect of the secondary flow. Since the secondary flow 
transports fluid particles away from the inner wall to the outer wall through the core, 
the boundary layer near the inner wall of a curved pipe develops much faster than 
that in a straight pipe. I n  contrast, the development of the boundary layer near the 
outer wall is greatly retarded by the oncoming secondary flow, as if ‘squeezed’ by 
the flow. That is why the axial-velocity profile near the outer wall remains steep even 
a t  distances far downstream. 

The smooth development of the boundary layer for moderately low K is shown in 
figure 4, which illustrates how the single flat region, the inviscid core, is affected by 
the boundary layers. I n  figure 4 (6) comparison is made with the axial-velocity profiles 
measured by Agrawal et al. (1978). The agreement is good, improving as we move 
downstream. The present calculation shows very good agreement with the compu- 
tation by Collins & Dennis (1975) and the experiments of Adler (1934) for K = 369.5 
(see figure 6). 

As K increases, however, two distinct flow features appear in the developing 
axial-velocity profile. First, in addition to  a single fiat inviscid core appearing 
right after the inlet, another flat region appears between the inner wall and the 
existing flat inviscid core, as if they formed two-step plateaus (see figure 5). The 
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(b ) (b') 

FIGURE 7. Contour of axial isovelocity for high K :  ( a )  at 0 = 83"; ( b )  at 6' = 180" for K = 564.8 
(Re = 1263, 6 = &); (a') at 6' = 83"; (b ' )  at 6' = 267' for K = 680.3 (Re = 900, 6 = $). 

two-step plateaus exist for about 45"-60° < B < 110"-130" for the case K = 680.3 
(Re = 900, 6 = $), and 38" < B < 60"-75" for the cases K = 670.8 (Re = 1500, 6 = &) 
and K = 564.8 (Re = 1263, S = &). 

Secondly, a double peak in the axial velocity appears on lines parallel to the plane 
of symmetry for high Dean numbers (see figure 7 )  in the developing and even fully 
developed regions. In  the axial isovelocity contours, the isovels double back on 
themselves, forming the double peaks in the axial-velocity profiles. These doubly 
peaked velocity profiles exist for a considerable range of z,  as indicated in 
figures 7 (a ,  a ' ) ,  but as the flow proceeds downstream the lines on which the double 
peak in velocity occur shift upward away from the plane of symmetry (see 
figures 7 b, 6 ' )  such that the doubly peaked velocity profile occurs a t  a distance from 
z = 0. Austin & Seader (1973) reported this velocity profile for the fully developed 
large-K flow. Austin (1971) observed a doubly peaked axial-velocity profile on the 
plane of symmetry in his studies of the flow development in a curved pipe with a 
parabolic entry profile. Agrawal et al. (1978) also found the same phenomena as t8he 
present results in their laser-Doppler experiments. For low Dean numbers the doubly 
peaked velocity profile does not occur (see figure 8) far downstream. These two 
distinct features of the axial-velocity development will be discussed later, together 
with a discussion of the secondary-flow development. 

As for the fully developed flow, the position of the maximum axial velocity shifts 
more and more outward, forming a steeper velocity gradient a t  the outer wall; the 
value of the maximum axial velocity also gets smaller as the Reynolds number 
increases for a given 8, as shown in the last station of B in figures 4 and 5. Patankar 
et al. (1974) also found these characteristics in their work on the flow development 
in a curved pipe with a parabolic entry profile. For S = $the maximum velocities are 
1.66, 1.56 and the radial positions of maximum velocity 0.67, 0.827 for Re = 242, 
900 respectively. For 6 = & the maximum velocity varies between 1.68 and 1.6 
and its radial position between 0.61 and 0.843 as the Reynolds number increases 
from 242 to 1500. 
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FIGURE 8. Contour of axial isovelocity for fully developed flow at  K = 182.9 (Re = 242, 6 = +) 

Secondary-$ow development and separation 

A secondary flow is set up immediately beyond the inlet such that, as we can see 
in figures 9 and 10, a radial velocity of considerable magnitude occurs near the entire 
wall, which is analogous to  the behaviour of the velocity normal to  the wall near the 
leading edge of a flat plate. Beyond this initial zone the secondary flow near the wall 
begins to  move circumferentially parallel to the wall, and the flow in the core region 
moves away from the inner wall parallel to the plane of symmetry. The magnitude 
of the circumferential velocity v quickly intensifies near the wall in a short distance 
from the inlet, and a secondary-flow boundary layer forms along the wall as if x = 1 
were the stagnation leading edge. The circumferential-velocity profiles are shown in 
figure 11, in which i t  can be seen that as K increases the 21-velocity changes abruptly 
near the wall. The secondary flow develops so fast that  the cross-flow attains its 
maximum intensity a t  the very early stages of flow development. For S = 3, v reaches 
the maximum value 0.323 a t  qi = 107", 8 = 55.7" ( l / a  = 6.8) for K = 182.9, and 0.345 
at  qi = 135", 0 = 48" (Zla = 5.86) for K = 680.3. For 6 = &, v attains the maximum 
value 0.17 a t  qi = 84", 8 = 34.75" ( l / a  = 12.1), and 0.193 a t  qi = 130", 8 = 28.5" 
(Z/a = 9.95) for K = 108.2, 670.8 respectively. As the flow moves further down- 
stream, beyond the cross-section where the maximum v occurs in the cross-flow 
boundary layer, the secondary flow weakens asymptotically until i t  becomes fully 
developed. At B,, vmax is 0.26 at qi = 96", 0.255 at 84", 0.147 a t  84" and 0.147 at 78" 
for K = 182.9, 680.3, 108.2 and 670.8 respectively. 

It is found that for a given S the magnitude of the secondary flow is affected little 
by Reynolds number, a t  least for the Reynolds numbers considered here; that  is, the 
intensity of the secondary flow is greatly influenced by S and not by Re. For example, 
comparing the flows for K = 680.3 and 670.8, almost-identical Dean numbers, we find 
that the intensity of the secondary flow for S = 3 is nearly twice as large as that 
for 6 = 8. For the same S = $, em,, for K = 182.9 (Re = 242) is almost the same as 
vmaX for K = 680.3 (Re = 900). What the Reynolds number does affect for a given 6 
is the shape of the secondary-flow boundary layer. Although the intensity of the 
secondary flow rises very little as Re increases for a given 6, v changes rapidly in the 
boundary layer near the wall as Re increases, which means that the secondary flow 
near the wall takes on ever more of a boundary-layer character for large Re. Figure 1 1  
also shows the development of the boundary layer for the cross-flow circumferentially 
along the wall. 
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FIQURE 9. Vector plot of the secondary flow a t  K = 182.9 (Re = 242, 6 = $). 

Figure 12 illustrates how u,, the cross-flow velocity a t  the plane of symmetry, 
changes with the axial coordinate 8. The present calculations show that the down- 
stream distances where v reaches its maximum values are nearly the same as 
the distances at which u, attains its maximum values. 

The $,,, where v,,, occurs in the boundary layer becomes greater as K increases. 
As described earlier, $,,, = 84", 107", 126", 130" and 135" for K = 108.2, 182.9,564.8 
(Re = 1263 and 6 = $ for this last value of K ) ,  670.8 and 680.3 respectively. Beyond 
$,,,the circumferential flow along the wall should slow down to satisfy the boundary 
condition v = 0 a t  $ = 180". For small K ,  because $,,, occurs far from the inner wall, 
there is sufficient distance for the flow to decelerate from vmax to v = 0, so that the 
secondary flow can turn smoothly a t  the inner bend, all the while remaining attached 
to the circular wall. On the other hand, for large K ,  the circumferential flow in the 
secondary-flow boundary layer does not have a sufficient distance to come to rest at 
$ = 180°, since $,,, occurs near the inner bend; furthermore, an adverse pressure 
gradient forms circumferentially along the wall beyond d,,,. Therefore separation 
of the secondary-flow boundary layer is inevitable near the inner wall. The plots in 
the second column of figure 10 show the separated recirculating regions near the inner 
bend. Figure 13 illustrates secondary-flow separation near the inner wall at 8 = 79" 
for K = 680.3. As the flow proceeds further downstream $,,, shifts away from the 
inner bend, providing enough room for the circumferential velocity to come to rest 
a t  $ = 180", with the secondary-flow boundary layer faithfully adhering to the 

5-2 
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FIGURE 10. Vector plot of the secondary flow at K = 680.3 (Re = 900, S = 4). 

wall. Thus separation of the secondary flow disappears a t  distances further down- 
stream. The present study shows that this separation occurs between about 
34" < I9 < 50°, 34" < I9 < 55" and 45" < I9 < 96" for K = 564.8, 670.8 and 680.3 
respectively. It can be seen that the secondary-flow separation is much more sensitive 
to 6 than to an increase in Re, since separation occurs over a larger axial region 
for K = 680.3 (Re = 900, a = + )  than for K = 670.8 (Re = 1500, 6=&). At its 
maximum size, the area occupied by the separation bubble is - 1 < x < -0.78, 
156.5O < g5 < 180' for K = 680.3 and - 1  < x < -0.86, 159.1" < g5 < 180" for 
K = 670.8. 

Figure 12 (a )  illustrates the u, profile for K = 182.9 for different 0. We see that u, 
reaches its peak a t  about 8 = 48.5", then the u, in the core region decreases in 
magnitude, forming a double peak in its profile beyond about B = 96O, and then 
increases again after 8 = 130". Figure 12(b)  shows the u, profile for the highest value 
of K for which calculations have been carried out, K = 680.3. After u, reaches a 
maximum, a t  8 = 42", i t  decreases in the core region, forming multipeaks in its 
profile, and then far downstream oscillates in magnitude in the region away from the 
walls. 

From these calculations we see that u, far from the wall oscillates continuously in 
magnitude at distances far downstream, while the cross-flow in the secondary-flow 
boundary layer becomes fully developed asymptotically. Strictly speaking, the 
downstream boundary condition imposed a t  8, is incorrect, since u, is not fully 



0
 

0 

r 
r 

1 
1 

12
' 

24
' 

36
' 

48
' 

60
' 

72
" 

84
' 

96
' 

10
7'

 
12

6O
 1

43
' 

5 
16

4O
17

O
o 

17
5'

 

(b
')

 
Q 

$
' 

0
 

0
.1

 

0 
0 

r 
r 

1 
1 

12
'1

24
' 

36
' 

48
' 

60
' 

72
' 

84
' 

96
' 

10
7°

12
60

14
30

 5
 

5 
16

4'
17

0O
 

Q 
+o
 $

 
F

IG
U

R
E

 11
. C

ir
cu

m
fe

re
nt

ia
l-

ve
lo

ci
ty

 p
ro

fi
le

 i
n 

$-
di

re
ct

io
n 

al
on

g 
th

e 
w

al
l:

 (
a

) K
 
=

 1
08

.2
 (

R
e 
=

 2
42

, 
8 

=
 &

);
 (

b
) 1

82
.9

 (
24

2,
 4)

; 
(c

) 5
64

.8
 (

12
63

, &
);

 fo
r 

fu
ll

y 
de

ve
lo

pe
d 

fl
ow

 (
a

')
 a

t 
0
 =

 2
8.

5"
; (

b'
) 7

9"
; (

c'
) 

25
9.

5"
; f

or
 K

 
=

 6
80

.3
 (

R
e 
=

 9
00

, S
 =

 f)
. 

T
h

e 
sc

al
e 

of
 

v 
is

 s
uc

h 
th

at
 t

h
e 

di
st

an
ce

 b
et

w
ee

n 
tw

o 
ne

ig
hb

ou
ri

ng
 d

as
he

d 
ve

rt
ic

al
 o

rd
in

at
es

 c
or

re
sp

on
ds

 t
o

 a
 v

el
oc

it
y 

of
 0

.1
. 



128 W.  Y .  Soh and S. A .  Berger 

X I  X 

(a) 1 (b)  

FIQURE 12. Cross-flow velocity u, on the plane of symmetry: ( a )  K = 182.9 
(Re = 242, 6 = +), ( b )  K = 680.3 (Re = 900, 13 = 4). 

developed there, owing to its oscillatory variation in the core region. I n  other words, 
a larger value of 0, should have been assumed such that the magnitude of the 
oscillation in the value of u, decreases as the flow approaches 8,. Computationally, 
however, i t  is almost impossible to specify an arbitrarily large 8,. Fortunately, the 
magnitude of the rate of change of u, with respect to 8, although oscillating, has 
decayed to sufficiently small values that imposition of the downstream boundary 
conditions at our choice of 8, is not bad physically. The oscillatory variation in u2 
in the core region seems inviscid in character, and may eventually decay owing to 
viscous effects far downstream beyond our 8,. 

Secondary-$ow effects on the development of the axial $ow 
Figure 9 shows that the secondary flow for K = 182.9 is attached all along the wall 

and turns smoothly a t  the innermost point of the cross-section for the entire length 
of the pipe except the very inlet area. Therefore the axial flow develops in a smooth 
fashion as shown in figure 4 ( b ) ,  with no double peak in the isovelocity contour (see 
figure 8). For large K ,  however, secondary-flow separation occurs in the developing 
region of 8. If separation occurs, u,, which is negative, becomes small in that region, 
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FIGURE 13. Direction plot of the secondary flow at 0 = 79" for K = 680.3. 

and, near the inner wall, remains small for a considerable downstream distance 8 after 
separation disappears (see figure 12b). As was mentioned earlier, two factors, the 
viscous effect and the cross-flow caused by the centrifugal force, assist in the 
axial-flow development before separation. Because, as noted above, in the separated 
region if this occurs, u, is small and negative near the inner wall and remains small 
for some distance downstream, the secondary flow has either an adverse, in the 
sense of delaying the transition to the fully developed state, or negligible effect on 
the axial flow development near the inner wall. This adverse effect can be seen in 
figures 14 (a ,  a ' ) ,  in that the axial wall shear increases a little during the separation. 
Therefore nearly pure viscous diffusion is the only mechanism contributing to 
axial-flow development. However, beyond the reattachment point on the plane of 
symmetry the value of u, rises again to a considerable magnitude, and again 
contributes to the development of the axial flow. This may be the reason for the 
occurrence of the two-step plateaus in the axial flow development (see figure 5 ) .  The 
ratio of the slope of the plateau nearer the inner wall to the slope between the two 
plateaus may be considered as a rough qualitative estimate of the ratio of viscous 
to centrifugal effects on the axial flow development. 

The secondary flow for high K is much more distorted than that for low K .  From 
figures 9 and 10 we see that for any value of K the vortex centre is shifted toward 
the inner wall as the flow develops, bringing i t  closer to the plane of symmetry. For 
large values of K this effect is more conspicuous, the vortex contour near the eye being 
elongated, with its tail reaching close to the outer wall (see figure 10, after 8 = 41.5'). 
Beyond the separation region the vortex eye moves upward from the plane of 
symmetry, elongating in shape much more. In the developing region, owing to the 
low position of the vortex eye and its elongated tail, double peaks in the isovelocity 
contours appear not far from the plane of symmetry, as shown in figures 7 (a ,  a'). 
Physically what is happening is that  the secondary-flow vortex conveys faster-moving 
fluid particles near the wall, x > 0, directly into the region of the vortex eye at some 
distance from the wall, x < 0. As the flow proceeds further downstream, the vortex 
centre moves up from the plane of symmetry, and double peaks appear only far from 
the plane of symmetry (see figures 7 b ,  b ' ) ,  For low K ,  double-peaked velocity profiles 
do not appear, as can be seen from figure 8. 
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FIQURE 14. Wall shears: (a ) ,  ( b )  for K = 670.8 (Re = 1500, 6 = t); (a'), (b ' )  for K = 680.3 (Re = 900, 
6 = 4). ( b )  and (b')  curves are for the flow far downstream, in the fully developed region. 

Pressure and wall shears 

ratio for the fully developed flow is calculated as 
Figure 15 shows the variation of pressure along the bend for K = 680.3. The friction 

where the pressure gradient ap/aO is calculated at Od. Figure 16 shows the variation 
of f c / f s  with K .  It is found that the pressure gradient (or friction) in a curved pipe 
is 3.62 times greater than that in a straight pipe for the greatest K in this work, 
K = 680.3. Dennis (1980) corroborated Collins & Dennis's (1975) results with a new 
finite-difference method, and confirmed the discrepancy between their results and 
Van Dyke's (1978) prediction that f c / f s  grows like K:. The present calculations agree 
with Collins & Dennis's results and Hasson's (1955) correlation of experiments for 
the range of moderately low K ,  say K < 369.5, but considerable discrepancy occurs as 
K increases. This discrepancy for high K may be explained as being caused partly by 
the effect of 8, and partly by the fact that in our calculations ap/aO, while almost 
constant, is still varying with B even at Od. In other words, to obtain a truly constant 
pressure gradient in the present developing-flow calculations, especially for large K ,  

0, should have been chosen much larger than the value used, which is computationally 
extremely difficult. 
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FIGURE 15. Pressure variation along the bend at K = 680.3. tan u = ap/M for straight pipe. 
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10 100 1000 K 

FIGURE 16. Friction ratio: ---, Van Dyke (1978); ---, Collins & Dennis (1975); Hasson 
(1955). Present calculations: o, K = 108.2; 0 ,  182.9; 0 ,  369.5; f ,  564.8; X ,  670.8; 0,  680.3. 

The shear stresses rT4 and rT8 are calculated from (3.9); at  the wall these become 

av aw 
ar ' ar . rr$ = - rT8 = - 

Axial wall shears T , ~  along the bend are shown in figures 14(a,a'). Initially, because 
of the particular entry profile used, the axial wall shear is greater a t  the inner wall 
than at  the outer. The axial-wall-shear curves cross over a t  a very early stage of flow 
development along the bend, the greater shear then occurring a t  the outer wall. For 
small S (figure 14a), crossover takes place quickly, while a longer axial distance is 
required for large S. For the flows at  K = 108.2 and 670.8, in which S is &, cross- 
over occurs a t  B = 8" (Z/a = 2.79) and 8.4' (Z/a = 2.93) respectively. 

In figure 17(a) the axial variation, from this calculation, of (aw/aq),,, a t  the 



FIGURE 17. Variation of axial shear with axial distance along the pipe: -.- , Singh (1974) ; 
_ _ _ - _  , Stewartson et ul. (1980); -, present calculation; 0, Talbot & Wong (1982). (a )  8 = $, 
Re = 900; ( b )  8 = &, Re = 1500. 

innermost part of the bend, where 7 is (1  - r )  ($K):, is compared with the values from 
the solutions of Singh (1974) and Stewartson et al. (1980). Also shown are the 
experimental data points of Talbot & Wong (1982), obtained using an electrochemical 
measurement technique, but for a slightly lower Dean number, K = 643 rather than 
680.3. We note, as indicated earlier, that  Stewartson et al. found that the axial shear 
vanishes a t  some downstream location. We see from the figure that whereas Singh's 
and this analysis also show a precipitous drop in shear stress, neither one shows 
vanishing of the shear stress at any point. The experimental data follow the 
theoretical predictions well, exhibiting the same steep drop in axial shear, as well (see 
Talbot & Wong) as a general trend of decreasing axial shear with increasing K ,  

although, even for the highest value of K (K  = 1355), the shear never vanishes. It 
should of course be borne in mind that the analysis of Stewartson et al. that predicts 
this vanishing of the shear is an asymptotic analysis valid in the limit K+ GO. (The 
Singh curve is shown only for those points where the solution is valid. It should also 
be noted that according to Stewartson & Simpson (1982) the part of the curve of 
Stewartson et al. beyond the point of zero axial shear is invalid.) Because the Singh 
and Stewartson et al. analyses both use the boundary-layer equations in the region 
immediately downstream of the entrance, it is not clear why there is a discrepancy 
between these two solutions near y = 0,  where y = (Z/a) &, unless the interaction of 
the boundary layer with the inviscid core is already important, an effect ignored by 
Stewartson et al., but included in Singh. The present solution differs from both of 
these, but by an  amount which can be accounted for by a shift of the curve by one 
cell in the case of Singh and two in the case of Stewartson et al. A shift of this amount 
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may reflect either the inherent indeterminacy in the calculation of the dependent 
variables near the first cell in a finite-difference calculation, or the fact that  the 
boundary-layer equations are only asymptotically valid (asymptotic in distance from 
the leading edge). Note also that for this case 6 = f and that the solutions of both 
Singh and Stewartson et al. are asymptotically valid only for small 6. Finally, we note 
that downstream of the point of minimum axial shear the present analysis exhibits 
qualitatively the same non-monotonic behaviour as the experimental data, a 
behaviour Talbot & Wong ascribe to the vortex structure embedded within the 
Dean-type secondary motion described in Choi et al. (1979). Figure 17 (b)  shows the 
same curves for 6 = &. Here the Singh and Stewartson et al. curves lie very close to 
one another, possibly because for this smaller value of 6 the interaction between the 
inviscid core and the boundary layer is minimal. The same comments apply here, as 
above, as to the possible explanation for the discrepancy between this work and that 
of Singh and Stewartson et al. 

Circumferential wall shears rr4 are shown in figures 14(b,b’). For large 6, say 6 = 4, 
the circumferential shear reaches values as high as 81 % of those of axial shear for 
K = 680.3, and 68% even for low Dean number, K = 182.9. The ratio rr4/rr0 at the 
wall becomes smaller as 6 gets smaller, its maximum value being 0.47 for K = 670.8 
and 0.35 for K = 108.2. 
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